Recombination between heterologous human acrocentric chromosomes

Andrea Guarracino^{1,2}, Silvia Buonaiuto³, Leonardo Gomes de Lima⁴, Tamara Potapova⁴, Arang Rhie⁵, Sergey Koren⁵, Boris Rubinstein⁴, Christian Fischer², Human Pangenome Reference Consortium, Jennifer L. Gerton⁴, Adam M. Phillippy⁵, Vincenza Colonna^{1,3}, and Erik Garrison²

1 Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; 2 Genomics Research Centre, Human Technopole, Viale Rita Levi-Montalcini 1, Milan, 20157, Italy; 3 Institute of Genetics and Biophysics, National Research Council, Naples 80111, Italy; 4 Stowers Institute for Medical Research, Kansas City, MO 64110, USA; 5Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA

1) Filling 8% of the reference which was incomplete

- The acrocentric p-arms were assembled for the **first time**.
- **High similarity** between p-arms of the acrocentric chromosomes seen in one genome.

2) Homology-based community detection

4) Acrocentric pangenome variation graph

3) Building an acrocentric pangenome variation graph

5) Pangenome untangling

6) Resolving homology mosaics

7) Pseudo-homologous regions (PHRs)

