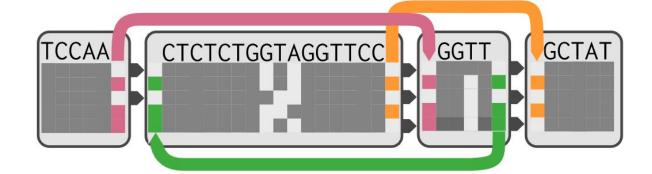

Semantic Variation Graphs - A Pangenome Ontology

Toshiyuki T. Yokoyama^{1*}, Simon Heumos^{2*}, Josiah Seaman³, Dmytro Trybushnyi⁴, Torsten Pook⁵, Andrea Guarracino⁶, Erik Garrison^{7,8} and Jerven T. Bolleman⁹ ¹The University of Tokyo, Chiba, Japan, ²Quantitative Biology, Center (QBiC) Tübingen, Germany, ³Max Planck Institute for Developmental Biology, Tübingen, Germany, ³Max Planck Institute for Developmental Biology, Tübingen, Germany, ⁴Karlsruhe, Germany, ⁵Center of Integrated Breeding Research, University of Goettingen, Germany, ⁶Center of Integrated Breeding Research, University of Goettingen, Germany, ⁴Karlsruhe, Germany, ⁴Karlsruhe, Germany, ⁵Center of Integrated Breeding Research, University of Goettingen, Germany, ⁴Karlsruhe, Germany, ⁴Karls ⁶University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, Italy, ⁷Genomics Institute, University of California Santa Cruz, Santa Cru

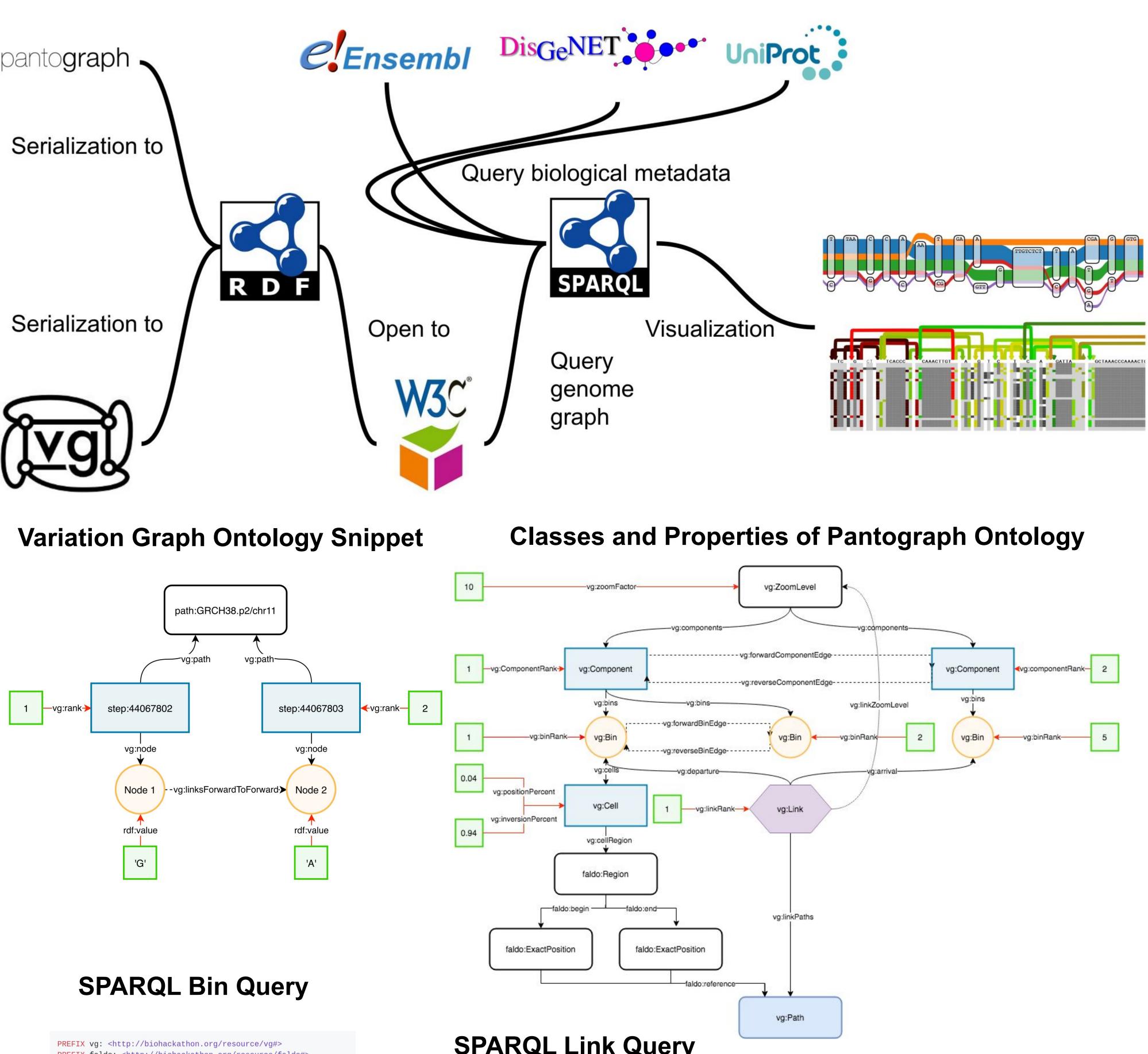
Variation graphs are a novel way to describe genomic variation. Existing toolkits have limited capabilities in integrating biological annotation and providing FAIR¹ interfaces for large scale visualizations. Borderless technology such as the Semantic Web allows variation graph toolkits and pangenome tools to focus on their core competence while allowing bioinformaticians to integrate, analyze, and visualize the data. We show how the vg RDF and Pantograph RDF can represent data for the Semantic Web and UniProt without conversions or loss of information into a single Variation and Knowledge Graph.

Variation graphs encode pangenomes


of genomic elements in a given species or clade. It can be encoded in the form of a variation graph, a particular type of sequence graphs which embed the linear sequences of the pangenome as paths in the graphs themselves.

https://bit.ly/PangenomeGraph

Pantograph Pangenome View


Each column of an MSA is a homologous base across all the individuals.

In the Pangenome Sequence, bases are encoded in a binary matrix. Structural rearrangement are visualized with Links.

Pangenome Sequence is aggregated into Bins forming bin-sized ZoomLevels.

https://bit.ly/PantographBrowser

1	—vg:rank→	st

WHERE {

SPARQL Querying a Pangenome Graph

SPARQL Link Query

PREFIX vg: <http://biohackathon.org/resource/vg#> PREFIX faldo: <http://biohackathon.org/resource/faldo#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> SELECT ?link ?path ?arrivalbinrank ?departurebinrank ?zoomfactor WHERE { ?link a vg:Link; vg:arrival ?arrivalbin; vg:departure ?departurebin; vg:linkPaths ?path ; vg:linkZoomLevel ?zoomlevel ?arrivalbin vg:binRank ?arrivalbinrank ?departurebin vg:binRank ?departurebinrank FILTER((?arrivalbinrank < 6 && ?arrivalbinrank > 0) (?departurebinrank < 6 && ?departurebinrank > 0)) ?zoomlevel vg:zoomFactor ?zoomfactor . FILTER(?zoomfactor = 1)

SPARQL Sequence Query

PREFIX vg:<http://biohackathon.org/resource/vg#> PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT (SUBSTR(group_concat(?sequence; separator=''), 1,5) as ?panSeq) SELECT *

WHERE {?s a vg:Node; rdf:value ?sequence

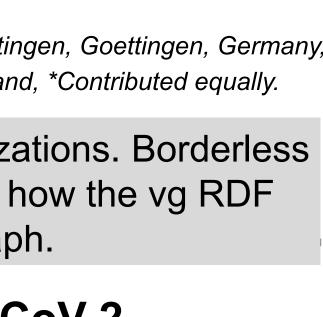
ORDER BY ?s

Variation Graph of a SARS-CoV-2 Pangenome

- <u>SpOdgi</u>: Translate odgi graph into linked pangenome
- Part of the CWL Public Sequence Resource workflow
- Triple store of more than 1300 viral genomes integrated with information from SIB, INDSC, UniProt³, Bgee, neXtProt, OMA, Rhea
- Ready to ask complex biological questions like "Are the active sites for PL1-PRO conserved?"

https://bit.ly/SpOdgi https://bit.ly/PublicSequenceResource https://bit.ly/COVID19StoreSIB

How to use it?


- SpOdgi creates Turtle for vg ontology
- Component Segmentation emits Turtle file for Pantograph ontology
- FALDO⁴ for linking (pan)genome positional information across ontologies

https://bit.ly/PangenomeOntology https://bit.ly/CompSegOntology

Future work

- Direct integration with FHIR and clinical data sources
- Improve scalability
- Integrate query optimizations
- We are one Javascript library away from running the Pantograph Browser on the Pangenome ontology!

The UniProt Consortium (2019). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res., 47, D506–D515. Bolleman et al. (2016). FALDO: a semantic standard for describing the location of nucleotide and protein feature annotation. Journal of Biomedical Semantics, 7.

