Identification of RNA sequence and structure motifs for protein interaction

Gerardo Pepel,#, Andrea Guarracinol,#, Francesco Ballesiol, Marta Adinolfil, Marco Pietrosantol, Elisa Sangiovanni1, Ilio Vitale2,3, Gabriele Ausiello1, Manuela Helmer –Citterich1 1 Department of Biology, University of Rome "Tor Vergata", Rome, Italy.

2 IIGM – Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Italy.

3 Candiolo Cancer Institute, FPO – IRCCS, Candiolo, Italy.

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

qBEAR

c (2-6nt, left/right)

d (7-10nt,

left/right)

e (>10nt, left/right)

n (2-9nt)

h (10-18nt)

y (19-22nt, >23nt)

b (left/right)

g (left/right)

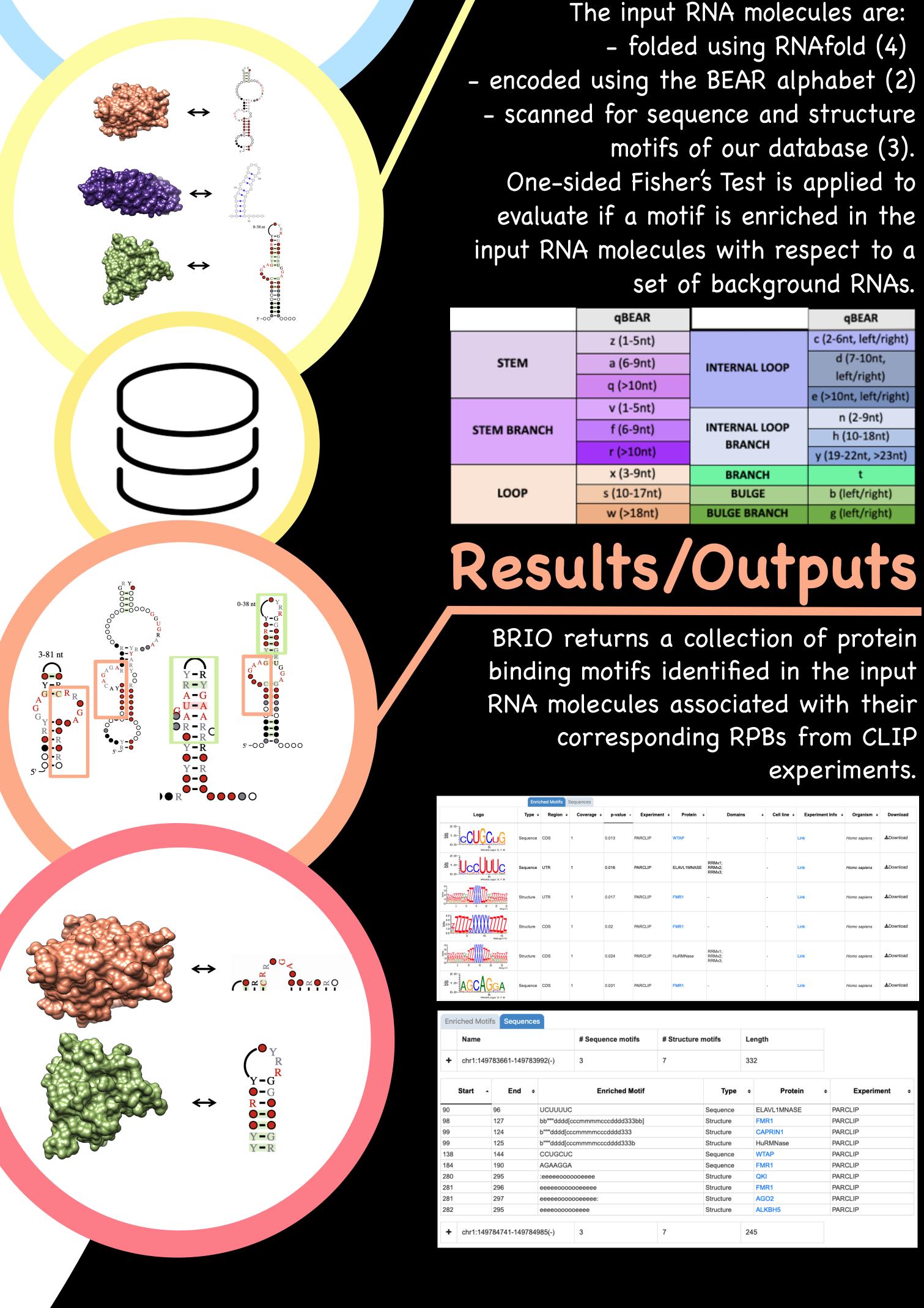
The BRIO webserver allows the user to search on a database of sequence and structure motifs specifically associated with RNA binding proteins in a set of one or more input RNA molecules.

Methods

Introductior

RNA-binding proteins (RBPs) play a central role in RNA metabolism, in transcript regulation, splicing, stability, and translation, as well as in the regulation of non coding RNAs.

The BRIO web server (1) enables



Beam RNA Interaction mOtif search tool

the identification of sequence and structure protein binding motifs in a set of one or more RNA molecules.

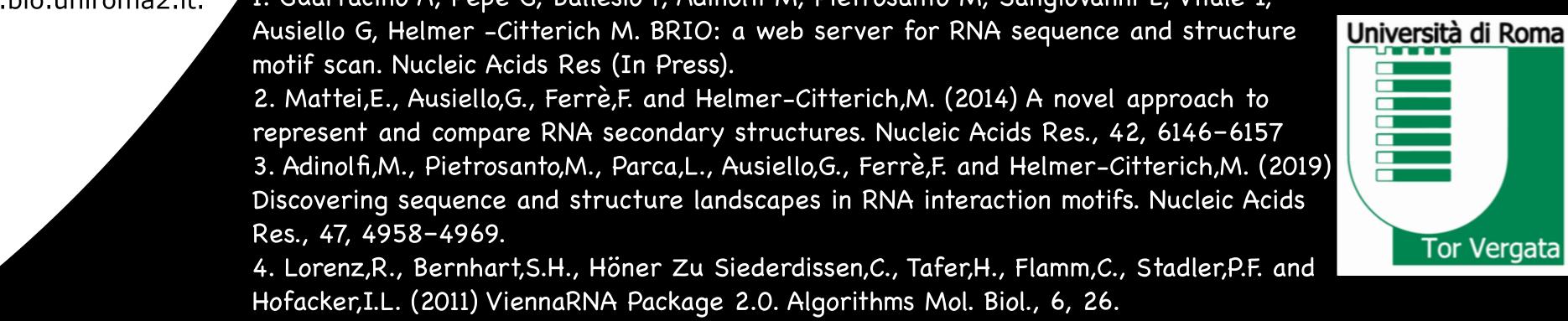
The BRIO motifs dataset encompasses 2296 sequence and 2508 structure motifs, associated with 186 RNA binding proteins and 69 protein domains by analyzing the results of several CLIP experiments (2).

BRIO takes advantage of the BEAR encoding to represent the structural motifs. This string encoding allows us to include also the structural context of each nucleotide in the secondary structure representation, without increasing the algorithm complexity (3).

Conclusion

Together with its friendly interface, BRIO can support scientists in their investigations on groups of RNA molecules of interest, their putative RBPs, and the roles these proteins play in RNA regulation.

To the best of our knowledge, no other web server exists offering the possibility to search for sequence and structure motifs associated with RNA binding proteins.


The web server is freely available at http://brio.bio.uniroma2.it. The source code is available at: https://github.com/helmercitterich-lab/BRIO.

experiments.

Enriched Motifs Sequences											
Logo	Type ÷	Region +	Coverage ÷	p-value 🔺	Experiment ÷	Protein ÷	Domains +	Cell line ÷	Experiment Info ÷	Organism ÷	Download
≝ 1.0 0.0 Waktogo 3.7.8	Sequence	CDS	1	0.013	PARCLIP	WTAP	-	-	Link	Homo sapiens	≵ Download
2.0 留 1.0 0.0 UCCUUC Watkop 3.7.8	Sequence	UTR	1	0.016	PARCLIP	ELAVL1MNASE	RRMx1; RRMx2; RRMx3;	-	Link	Homo sapiens	≵ Download
	Structure	UTR	1	0.017	PARCLIP	FMR1	-	-	Link	Homo sapiens	≵ Download
40 92 00 10 00 5 10 10 10 10 10 10 10 10 10 10	Structure	CDS	1	0.02	PARCLIP	FMR1	-	-	Link	Homo sapiens	≵ Download
140 140 140 140 140 140 140 140	Structure	CDS	1	0.024	PARCLIP	HuRMNase	RRMx1; RRMx2; RRMx3;	-	Link	Homo sapiens	≵ Download
	Sequence	CDS	1	0.031	PARCLIP	FMR1	-	-	Link	Homo sapiens	≵ Download

Enri	Enriched Motifs Sequences										
	Name			# Sequence motifs	e motifs # Structure motifs			ength			
+ chr1:149783661-149783992(-)			3 92(-)	3	7		332				
	Start ∽ End ≑		Enriched Motif	Туре	\$	Protein	¢	Experiment	\$		
90		96	UCUUUUC		Sequence		ELAVL1MNASE		PARCLIP		
98		127	bb"""dddd[c/	ccmmmmcccdddd333bb]		Structure		FMR1		PARCLIP	
99		124	b"""dddd[ccr	cmmmmcccdddd333	Structure	CAPRIN1			PARCLIP		
99		125	b"""dddd[ccr	cmmmmcccdddd333b	Structure HuRM		HuRMNase		PARCLIP		
138		144	CCUGCUC		Sequence WTAP		WTAP		PARCLIP		
184		190	AGAAGGA		Sequence FMR1		FMR1		PARCLIP		
280		295	:eeeeeoooo	ooeeee	Structure QKI		QKI	PARCLIP			
281		296	eeeeooooo	ooeeeee	Structure		FMR1		PARCLIP		
281		297	eeeeooooo	ooeeeee:	Structure		AGO2		PARCLIP		
282	82 295 eeeeoooo			beeee	Structure ALK		ALKBH5		PARCLIP		
+ chr1:149784741-149784985(-)			985(-)	3	7		245				

1. Guarracino A, Pepe G, Ballesio F, Adinolfi M, Pietrosanto M, Sangiovanni E, Vitale I, motif scan. Nucleic Acids Res (In Press).

