
Unsorted graph in 1D

PATH-GUIDED STOCHASTIC GRADIENT DESCENT

Our algorithm moves a single pair of nodes at a time, 
optimizing the disparity between the layout distance of 
a node pair and the actual nucleotide distance of a path 
traversing these nodes.

● The first node Xi of a pair is a uniform path step pick 
from all nodes.

● The second node Xj of a pair is sampled from the 
same path following a Zipfian distribution. 

● The path nucleotide distance of the nodes in the 
pair guides the actual layout distance dij update of 
these nodes. The magnitude r of the update 
depends on the current learning rate of the SGD.

Graph Layout by Path-Guided Stochastic Gradient Descent

GRAPH SIMPLIFICATION PIPELINE

● Smoothxg runs SPOA for each block of paths that 
are collinear within a seqwish induced variation 
graph. A prerequisite is that the graph nodes are 
sorted according to their occurrence in the graph's 
embedded paths. Our 1D path-guided SGD 
algorithm is designed to provide this kind of sort.

GRAPH VISUALIZATIONS EXPLAINED

● The graph nodes’ are arranged from left to right 
forming the pangenome’s sequence. 

● The colored bars represent the binned, linearized 
renderings of the embedded paths versus this 
pangenome sequence in a binary matrix. 

● The black lines under the paths, so called links, 
represent the topology of the graph.

● Each dot represents a node. The node’s 
x-coordinates are on the x-axis and the 
y-coordinates are on the y-axis, respectively.

Simon Heumos1*, Andrea Guarracino2*, and Erik Garrison3,4

VARIATION GRAPHS ENCODE PANGENOMES

A pangenome1 models the full set of genomic 
elements in a given species or clade. It can efficiently 
be encoded2 in the form of a variation graph, which 
embeds the linear sequences of the pangenome as 
paths in the graphs themselves. 

https://bit.ly/PangenomeGraph
https://bit.ly/OptimizedDynamicGraphImplementation

FUTURE WORK

● Explore the path-guided SGD parameter space
● Compare our proposed 2D graph layouting algorithm 

with existing pangenome graph visualization tools
● Enhance our 2D drawing method, draw paths in 2D
● Find out performance boundaries applying the 

algorithms up to gigabase-scale pangenome graphs.

Pangenome graphs built from raw sets of alignments may have complex structures which can introduce difficulty in downstream analyses, visualization, mapping, and interpretation. Graph sorting aims to find the best node order for a 1D and 2D layout to simplify these complex regions. 
Pangenome graphs embed linear pangenomic sequences as paths in the graph, but to our knowledge, no algorithm takes into account this biological information in the sorting. Moreover, existing 2D layout methods struggle to deal with large graphs. We present a new layout algorithm to 
simplify a pangenome graph, by using path-guided stochastic gradient descent (SGD3) to move a single pair of nodes at a time. We exemplify how the 1D path-guided SGD implementation is a key step in general pangenome analyses such as pangenome graph linearization and simplification.

Intermediate snapshots in 1D

1Quantitative Biology Center (QBiC) Tübingen, University of Tübingen, Tübingen, Germany, 2University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, Italy, 3Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA, 4Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA, USA
*Contributed equally.

References
1. Eizenga et al. (2020). Pangenome Graphs. Annual Reviews of Genomics and Human Genetics, 21, 1.
2. Eizenga et al. (2020). Efficient dynamic variation graphs. Bioinformatics, btaa640.
3. Zheng et al. (2019). Graph Drawing by Stochastic Gradient Descent. IEEE Transactions on Visualization and Computer Graphics. 25, 2738-2748.

[2] Jeizenga et al.

Acknowledgements
We thank Vincenza Colonna for organizing the Crusco Summer Hackathon and the Forentum Ritrovato museum for hosting it. 
We thank the deNBI cloud for providing computational resources. 
S.H. acknowledges funding from the Central Innovation Programme (ZIM) for SMEs of the Federal Ministry for Economic Affairs and Energy of Germany.

Smoothed graph in 1D

Unsorted graph in 2D Sorted graph in 2DIntermediate snapshots in 2D

[4] Zheng et al.

Sorted graph in 1D

https://www.sciencedirect.com/topics/computer-science/zipf-distribution
https://github.com/pangenome/pggb
https://github.com/ekg/smoothxg
https://github.com/rvaser/spoa
https://github.com/ekg/seqwish#a-variation-graph-inducer
https://bit.ly/PangenomeGraph
https://bit.ly/OptimizedDynamicGraphImpl
https://www.annualreviews.org/doi/abs/10.1146/annurev-genom-120219-080406
https://bit.ly/GraphLayoutBySGD
https://github.com/ekg/smoothxg
https://www.denbi.de/cloud
https://github.com/ekg/HLA-zoo/blob/master/seqs/DRB1-3123.fa
https://github.com/ekg/smoothxg


Questions

● How/why node sorting improves read mapping speed, memory, and accuracy against a pangenome 
graph? 
→ When the graph is well sorted, the mapping is easier because the nodes are already in their linear order, 
so we can build chains for mapping easier, improving seeding for the colinear chains during the mapping 
(minimap2). 
→ Most pangenome variation graphs may have large scale structural variation globally, but, usually, they 
are locally linear or partially orderable. We can sort these graphs so that their colinear regions are 
represented contiguously within a sort order, and our algorithm is suited for that. This lets us use efficient 
collinear chaining methods to find target mappings. One can use SPOA to obtain a base-level alignment.

● What about non-biological graphs? Is the algorithm suitable also for other types of graphs? 
→Yes, it is. Our implementation only requires a graph represented as a variation graph (you can take a 
look at the GFAv1 format specifications). This is a type of sequence graph which embeds samples as paths 
in the graph itselfs, paths that our algorithm exploits in the sorting. However, you don’t need to embed 
paths in your graph, because we have already implemented a tool (odgi cover) to cover the graph, 
generating paths in it.

https://academic.oup.com/bioinformatics/article/34/18/3094/4994778


Questions

● What about memory requirements of your sorting algorithm? 
→ ~ 2-4 times the GFA input. Depends on the complexity of the graph. Instead of holding all node pairs 
distances in memory, we use a succinct path index to randomly sample the node pair we want to update. 
Therefore, we overcome the major limit of Zheng et al.: Quadratic memory requirement!

● Why is there visually much less sequence in the smoothxg viz compared to all the other 1D sorts? 
→ Here SPOA is changing the alignments. “If the synteny requirement is too big then some of the 
sequences will stop mapping against each other around SVs.”

● Does there already exist a similar method on how you transformed the SGD into a multi-threaded version? 
→ There is a work which describe formally what we are already doing: Hogwild!, which is a lock-free 
multi-threaded SGD, where results of other threads can be overwritten. In our case, the datastructure to 
work on for optimizing the sorting is sparse: this means that each gradient update only modify a small part 
of the decision variable. This is a condition for Hogwild!, and our method, to achieve a nearly optimal rate of 
convergence to a good solution, a good sorting in our case.

● Why do you use the Zipfian distribution for the sampling of the second node? 
→ Focus on a short scale, occasionally samples larger values. By experience.
Because we want to update node pairs which are close in path space more often than node pairs that are 
far away in path space in order to resolve the locally complex regions of the graph. 
→ We can try a linear one.

https://people.eecs.berkeley.edu/~brecht/papers/hogwildTR.pdf


Questions

● Why is a sorted odgi graph smaller on disk?
→ Edge space: relativistic encoding: small deltas use 1 byte, larger ones several bytes
→ bit width for paths, will dominate the effect for the edges

● Can you mathematically quantify the quality of a sort? 
→ There are several possible way to do that:
→ You can define a stress function, calculating the distances of all possible pairs of nodes, trying to 
minimize it, avoiding node overlapping. We want to point out that this formulation is not doable in practise, 
because the complexity of its computation is quadratic respect to the number of node, and it can’t be 
computed quickly on medium-big graphs.
→ However, we define specific metric which measure the quality of the sorting taking into account the path 
embedded in the graph. For example, in 1D, we go through the graph following each path, considering a 
penality each time an edge go back respect to the linear order. Moreover, this metric is computable in linear 
time respect the number of nodes, avoding the complexity problem.


