

A pangenome ${ }^{1}$ models the full set of genomic elements in a given species or clade. It can efficiently be encoded ${ }^{2}$ in the form of a variation graph, which embeds the linear sequences of the pangenome as paths in the graphs themselves.
https://bit.ly/PangenomeGraph
https://bit.ly/OptimizedDynamicGraphlmplementation

Intermediate snapshots in 1D

Unsorted graph in 2D
PATH-GUIDED STOCHASTIC GRADIENT DESCENT
Our algorithm moves a single pair of nodes at a time optimizing the disparity between the layout distance of a node pair and the actual nucleotide distance of a path traversing these nodes.

- The first node X_{i} of a pair is a uniform path step pick from all nodes.
- The second node X_{j} of a pair is sampled from the same path following a Zipfian distribution.
- The path nucleotide distance of the nodes in the pair guides the actual layout distance $d_{i j}$ update of these nodes. The magnitude r of the update depends on the current learning rate of the SGD.

GRAPH VISUALIZATIONS EXPLAINED

- The graph node' as anged from forming the pangenome's sequence
- The colored bars represent the binned linearized rendering of the resen the binned, linearized pangenome sequence in a binary matrix
The black lines under the paths, so called links, represent the topology of the graph.

- Each dot represents a node. The node's x-coordinates are on the x-axis and the y-coordinates are on the y-axis, respectively.

GRAPH SIMPLIFICATION PIPELINE

- Smoothxg runs SPOA for each block of paths that are collinear within a seqwish induced variation graph. A prerequisite is that the graph nodes are sorted according to their occurrence in the graph's embedded paths. Our 1D path-guided SGD algorithm is designed to provide this kind of sort.

FUTURE WORK

- Explore the path-guided SGD parameter space

Compare our proposed 2D graph layouting algorithm with existing pangenome graph visualization tools
Enhance our 2D drawing method, draw paths in 2D
Find out performance boundaries applying the algorithms up to gigabase-scale pangenome graphs.

Questions

- How/why node sorting improves read mapping speed, memory, and accuracy against a pangenome graph?
\rightarrow When the graph is well sorted, the mapping is easier because the nodes are already in their linear order, so we can build chains for mapping easier, improving seeding for the colinear chains during the mapping (minimap2).
\rightarrow Most pangenome variation graphs may have large scale structural variation globally, but, usually, they are locally linear or partially orderable. We can sort these graphs so that their colinear regions are represented contiguously within a sort order, and our algorithm is suited for that. This lets us use efficient collinear chaining methods to find target mappings. One can use SPOA to obtain a base-level alignment.
- What about non-biological graphs? Is the algorithm suitable also for other types of graphs? \rightarrow Yes, it is. Our implementation only requires a graph represented as a variation graph (you can take a look at the GFAv1 format specifications). This is a type of sequence graph which embeds samples as paths in the graph itselfs, paths that our algorithm exploits in the sorting. However, you don't need to embed paths in your graph, because we have already implemented a tool (odgi cover) to cover the graph, generating paths in it.

Questions

- What about memory requirements of your sorting algorithm? \rightarrow 2-4 times the GFA input. Depends on the complexity of the graph. Instead of holding all node pairs distances in memory, we use a succinct path index to randomly sample the node pair we want to update. Therefore, we overcome the major limit of Zheng et al.: Quadratic memory requirement!
- Why is there visually much less sequence in the smoothxg viz compared to all the other 1D sorts? \rightarrow Here SPOA is changing the alignments. "If the synteny requirement is too big then some of the sequences will stop mapping against each other around SVs."
- Does there already exist a similar method on how you transformed the SGD into a multi-threaded version? \rightarrow There is a work which describe formally what we are already doing: Hogwild!, which is a lock-free multi-threaded SGD, where results of other threads can be overwritten. In our case, the datastructure to work on for optimizing the sorting is sparse: this means that each gradient update only modify a small part of the decision variable. This is a condition for Hogwild!, and our method, to achieve a nearly optimal rate of convergence to a good solution, a good sorting in our case.
- Why do you use the Zipfian distribution for the sampling of the second node? \rightarrow Focus on a short scale, occasionally samples larger values. By experience. Because we want to update node pairs which are close in path space more often than node pairs that are far away in path space in order to resolve the locally complex regions of the graph. \rightarrow We can try a linear one.

Questions

\rightarrow You can define a stress function, calculating the distances of all possible pairs of nodes, trying to minimize it, avoiding node overlapping. We want to point out that this formulation is not doable in practise, because the complexity of its computation is quadratic respect to the number of node, and it can't be computed quickly on medium-big graphs. \rightarrow However, we define specific metric which measure the quality of the sorting taking into account the path embedded in the graph. For example, in 1D, we go through the graph following each path, considering a penality each time an edge go back respect to the linear order. Moreover, this metric is computable in linear time respect the number of nodes, avoding the complexity problem.

