Semantic Variation Graphs: Ontologies for Pangenome Graphs

Toshiyuki T. Yokoyama™, Simon Heumos?*, Josiah Seaman?®, Dmytro Trybushnyi*, Torsten
Pook®, Andrea Guarracino®, Erik Garrison”® and Jerven T. Bolleman®

1The University of Tokyo, Chiba, Japan

2Quantitative Biology Center (QBIC) Tubingen, University of Tubingen, Tibingen, Germany

SMax Planck Institute for Developmental Biology, Tiubingen, Germany

4Karisruhe Institute of Technology, Karlsruhe, Germany

SCenter of Integrated Breeding Research, University of Goettingen, Goettingen, Germany

6Univers/z‘y of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, Italy

"Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA

8Biomolecular Engineering and Bioinformatics, University of California Santa Cruz, Santa Cruz, CA, USA

9SIB Swiss Institute of Bioinformatics, Geneva, Switzerland

* Contributed equally.

ABSTRACT

Background: Variation graphs are a novel way to describe
genomic variation across a population. Variation graph tools
present a significant improvement in mitigating reference
bias compared to the linear reference ecosystem. Existing
toolkits focus on algorithms processing pangenome graphs.
Yet, they have limited capabilities in integrating various
annotations of the biology and providing an interface for
large scale visualizations.

Description: To interpret biological meaning in variation
graphs by integrating various kinds of annotations for
further analysis, FAIR data interchange formats are
demanded. Borderless technology such as the Semantic
Web allows variation graph toolkits and pangenome tools to
focus on their core competence while allowing
bioinformaticians to integrate, analyze, and visualize the
data.

Result: We demonstrate how we can represent a graphical
pangenome with pangenome ontologies using a standard
declarative graph query language. Then we show how the
vg RDF and Pantograph RDF can represent data ready for
the Semantic Web and how we can combine existing data
from INDSC and UniProt without conversions or loss of
information into a single Variation and Knowledge Graph.

1 INTRODUCTION

Continuous improvement in sequencing throughput and cost
has enabled us to collect population-scale sequence data
(Sudmant et al. 2015). The number of sequenced genomes
and non-negligible reference bias suggest a pressing need
for reference graph genome (Garrison et al. 2018, Ballouz et
al. 2019). The Variation Graph toolkit (vg) is one of the
pioneering works to provide plenty of graph genome

algorithm implementation. As many genomes are integrated
into a graph, more and more variations are encoded on it,
forming a graphical pangenome'. Consequently, the
visualization becomes more complicated, demanding an
efficient way to visualize them (Yokoyama et al. 2019).
Pantograph? is handling this challenge by merging nodes as
components using the binned, linked nodes provided by
odgi (Eizenga et al. 2020). Including Pantograph,
continuous effort on graph genome tools are undergoing by
many developers around the world.

Interpretation of the variation encoded in the pangenome
graph requires integration with existing genomic
annotations and subsequent visualization. However, there is
no general way to represent pangenome graphs as
subject-predicate-object triples, thus hindering efficient
integration with annotations and variation graph, and
communication in a more general way between tools, e.g.
frontend and backend in a web application.

Here we present two ontologies, vg RDF and Pantograph
RDF, to be general enough as pangenome ontologies to
represent variation graph and pangenomic order of linked
nodes. We employ Semantic Web technologies to integrate
with various kinds of genomic annotations because they
have been adopted as a data exchange format by many life
science databases (Bolleman et al. 2016 and Kawashima et
al. 2018), making graphical pangenomes FAIRer
(Wilkinson et al. 2016 and Ballouz et al. 2019). vg RDF is
able to encode variant graph topologies. Pantograph RDF
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encodes bins, components, and links on top of vg RDF to
enable linear visualization of large scale data. We describe
the definition of vg RDF and Pantograph RDF, and their
application of a real-world dataset.

2 IMPLEMENTATION

Both the vg and Pantograph ontologies were implemented in
the repository of the variation graph toolkit’. An overview
of potential application cases, especially with respect to
visualization, is given in Fig. 1.
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Fig. 1. The schematic diagram of RDF on vg and Pantograph
ontology exemplifying the integration of annotation data from
different SPARQL endpoints.

2.1 Variation Graph Schema Ontologies

Variation graphs are directed nucleotide sequence graphs
and are therefore expressible in RDF. The central concepts
in variation graphs are nodes, edges and paths. Sequence is
stored in nodes being linked by bidirect edges. Paths
through the nodes describe linear genomic sequences.

A Node in the vg RDF is equivalent to a node in the vg data
model. The same applies for Edges. A Path is a list of Steps
that represent a sequence of Node visits showing its linear
biological sequence. Each Step connects a Node into a Path

(Fig. 2).
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Fig. 2. An example of class and properties used in vg RDF.
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Paths may visit the same node more than once, which allows
the representation of tandem repeats. The topology of the
variation graph is expressed with vg:Nodes and vg:links and
it’s subproperties. Moreover, vg:Paths and vg:Steps are
required to reconstruct linear molecular sequence
representations (i.e., to make ‘FASTA’ files).

A key consideration is permanence of node identifiers.
Currently these are not tracked between builds. While they
could be nodes, for pragmatic reasons we have skolemized
them and given them IRIs for which we can not guarantee
stability, nor collision. It is technically possible to deploy a
variation graph with stable node IRIs given enough
resources.

2.2 Pantograph Ontologies

Here the pangenome graph is a subset of a variation graph
characterized by a much larger number of genomes,
demanding a more effective way to visualize the entire
graph. odgi calculates a linear order of nodes called
Pangenome Sequence and separates nodes into bins by a
certain width called bin width. Non-linear edges caused by
structural rearrangement are called links. Links are
preserved after linear order is calculated. In the Pantograph
pipeline, Component Segmentation groups bins into
components and bindles the links to assign on two ends of
each component. By specifying the bin width (zooming
level), we have components, each of which has one or more
bins. Pantograph RDF is a view-oriented ontology inspired
by the development of Pantograph.

Pantograph is a small web ontology language version 2
(OWL2) ontology with 7 classes, 1 of these is external,
FALDO, and deals with the concept of a position on a Bin
(Fig. 3). In a variation graph, nodes can be grouped as bins.
To increase the aggregation level, odgi introduces the
concept of bins, defined as combinations of nodes into
longer DNA segments of a given length (bin width). We
have multiple layers of bins with different bin sizes, which
we denote as zoom layers. The zoom layer is intended to
provide a zoom in/out feature in a visualization tool. Each
vg:ZoomLevel represents all components of a given
zoomFactor of a pangenome. Each vg:Component has one
or more bins inside. Each vg:Bin has one or more cells
inside. The concept can be seen as a matrix-like layout,
where the x-axis is a list of bins, and the y-axis is a list of
paths. vg:Cell is an intersection of both axes on the matrix,
i.e., a cell represents a subsequence of the path. Cell has a
reference to the faldo:position via cellRegions property. Cell
also has inversionPercent (a fraction of inversion) and
positionPercent (a fraction of the length of a subsequence of
the path occupying this cell).

Components and bins are aligned in the order of the
Pangenome Sequence. Forward/reverse edge and rank are
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used to indicate the adjacency on the Pangenome Sequence.
Forward/reverse edge and rank work complementary; rank
is a simple way to represent order, and edge is easy for
querying adjacent nodes. Users can use either edge or rank
for describing adjacency of components or bins. In addition,
there is a vg:Link, which is a non-linear edge between bins.
Link has one or more vg:Path via linkPaths. Link also has
arrival and departure bins to represent an arrow between
two distant bins. Because the order of link matters in
visualization, forward/reverse edge and rank are stored in
each link.
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Fig. 3. The class and properties used in Pantograph ontology and
its example.
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3 RESULT

3.1 SPARQL Querying a Semantic Genome
Graph

During Japan Biohackathon 2019 we extended the
JavaScript library Sequence Tube Map (Beyer et al. 2019)
to display MatrixTubeMaps®*. As a first test of the vg
Ontology, we demonstrated that it is possible to SPARQL
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query a vg RDF triple store and visualize the response as a
MatrixTubeMap’.

3.2 Variation Graph of an SARS-CoV-2
Pangenome

During the virtual biohackathon-2020 spodgi is used to
translate and seqwish®/odgi build variation graph into a
linked pangenome. This pangenome of more than 800 viral
genomes is loaded into a SPARQL endpoint with the
associated INDSC, UniProt and other SIB Swiss Institute of
Bioinformatics data in RDF
(https://covid-19-spargl.expasy.org) this integrated
knowledge base allows us to answer questions such as “are
the active sites for PL1-PRO conserved” and what about the
surrounding sequence stretch? If not, is there a geographic
spread which pinpoints where the mutations happened?
Linking to external data resources such as wikidata, for
names of regions in multiple languages. An example of how
such a SPARQL endpoint could be queried is given in Fig.
4.

SELECT
DISTINCT
7insdCDS #7insdCDSBegin 7insdCDSENd ?step
7uniprot ?stepBeginInProteinSpace ?stepEndInProteinSpace 7annotationText
WHERE

{
# Find CDS annotated by INDSC that do not match a UniProt protein.
?insd(DS insdc:translation ?sequence ;
a insdc:Coding_Sequence ;
faldo:location ?insdCDSLocation .
MINUS {
7uniprotSequence rdf:value 7sequence .

# Get the range of this CDS and make sure the coordinates are on the
# path we need later
?insdCDSLocation faldo:begin [ faldo:reference 7path ;
faldo:position ?insdCDSBegin] ;
faldo:end [ faldo:reference 7path ;
faldozposition 7insdCDSEnd] .

?step a vg:Step ;
vg:path/skos: closeMatch path ;
vg:node 7node ;
faldozbegin [ faldo:reference/skos:closeMatch 7path ;
faldo:position ?insdeStepBegin | ;
faldozend [ faldo:reference/skos: closeMatch 7path ;
faldo:position 7insdcStepEnd ] .
## I always forget how to interval ranges :(
FILTER ( (7insdcStepBegin >= 7insd(DSBegin & ?insdcStepBegin <= 7insdCDSEnd) ||
(24nsdCDSBegin >= ?insdcStepBegin && ?insdCDSBegin <= 2insdcStepEnd) ||
(7insdcStepEnd >= 7insdCDSEnd && ?insdcStepEnd <= 7insdCDSBegin) ||
(?insd(DSEnd >= ?insdcStepEnd & ?insd(DSEnd <= ?insdcStepBegin) )
## Then we look for a node close to the ones in the CDS in genome graph space (one step)
?node vg: LinksForwardToForward 7nextNode .
?step2 a vg:Step ;
vgipath/skos: closeMatch ZnextPath ;
vg:node nexthode .
## Where that node is on a uniprot matching sequence
nextinsdCDS insdc:translation 7nextSequence ;
a insdc:Coding_Sequence ;
faldo:location/faldo:begin/faldo:reference 7nextpath .
?uniprot up:sequence/rdfivalue nextSequence .
BIND(IF(?insdCDSBegin > ?insdcStepBegin, ?insd(DSBegin, 7insdcStepBegin - ?insd(DSBegin)/3 AS 7stepBeginInProteinSpace)
BIND(IF(?insdCDSENd > ?insdcStepEnd, ?insdcStepEnd, ?insdCDSBegin - ?insdcStepEnd)/3 AS 7stepEndInProteinSpace)
Zuniprot up:annotation 7annotation .
7annotation a up:Active_Site_Annotation .
?annotation up:range ?annotationRegion .
7annotation rdfs:comment ?annotationText .
?annotationRegion faldo:begin/faldo:position 7annotationBegin .
7annotationRegion faldo:end/faldo:position 7annotationnd .
FILTER (7annotationBegin >= ?stepBeginInProteinSpace & 7annotationEnd < 7stepEndInProteinspace )
¥

Fig. 4. SPARQL query for retrieving nodes representing the
coding nucleotides for an active site at protein level.
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<pg/zooml> a vg:ZoomLevel ;
vg:components <pg/zooml/componentil>,
<pg/zooml/component2>=,
<pg/zooml/component3>,
<pg/zooml/componentd> ;
vg:zoomFactor 1 .
<pg/zooml/componentd> a vg:Component ;
vg:bins <pg/zooml/component4/bini2>,
<pg/zooml/componentd/bini6é=>,
<pg/zooml/component4/biniv> ;
vg:componentRank 4 ;
vg:reverseComponentEdge <pg/zooml/component3= .
<pg/zooml/1linkl> a wvg:Link ;
vg:arrival <pg/zooml/component2/bini> ;
vg:departure <pg/zooml/componentd4/binl7> ;
vg:linkPaths <G> .
<pg/zooml/component2/binl/celll> a vg:Cell ;
vg:cellRegion <6/region/s/1-1> ;
vg:inversionPercent @ ;
vg:positionPercent .14 .
<pg/zooml/component4/binl?7> a vg:Bin ;
vg:binRank 17 ;
vg:cells <pa/zooml/componentd/binl7/cell28>,
<pg/zooml/componentd/binlv/cell34d>,
<pg/zooml/component4/binl7/cellde> ;
vg:reverseBinEdge <pg/zooml/componentd4/binlé> .
<6/region/1-1> a faldo:Region ;
faldo:begin <6/position/1> ;
faldo:end <6/position/1> .

Fig. 5. Example Turtle output of Component Segmentation..

3.3 Zero Extra Costs
Graphs - Spodgi

SPARQLable Genome

Converting and loading a genome graph into an RDF
datastore can incur significant costs in storage. Spodgi’
shows we can use python RDFLib to run SPARQL on
native genome graph (odgi) data formats without extra
storage related costs. If required, Spodgi can serialize the
genome graph to Turtle®, providing it on the Semantic Web
in a triple store. For example a SARS-CoV-2 pangenome
graph, in an optimised native storage layer odgi will use
20mb of disk space, while the same converted to n-triples
takes 7.2 GB. Even an optimized Turtle representation with
the best xz compression is almost three times the size on
disk.

4 DISCUSSION

vg RDF and pantograph RDF are pangenome ontologies
based on Semantic Web technologies for describing the data
structure in a consistent manner. The various use-cases

7 https://github.com/pangenome/spodgi

using vg and pantograph RDF show that users can easily
query pangenome across the border of data providers.
SPARQL endpoint with data described in pangenome
ontologies will encourage users to reuse queries in various
tools that access genomic annotations on variation graphs.

ABBREVIATIONS
e FAIR: Findable, Accessible, Interoperable,
Reusable

e FALDO: Feature Annotation Location
Description Ontology

IRI: Internationalized Resource Identifier
OWL: Web Ontology Language

RDF: Resource Description Framework
SPARQL: SPARQL Protocol and RDF Query
Language

Turtle: Terse RDF Triple Language

e UniProtKB: Universal Protein Knowledgebase
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PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>

PREFIX uniprotkb: <http://purl.uniprot.org/uniprot/>

PREFIX uberon: <http://purl.obolibrary.org/obo/uo#>

PREFIX taxon: <http://purl.uniprot.org/taxonomy/>

PREFIX sp: <http://spinrdf.org/sp#>

PREFIX SLM: <https://swisslipids.org/rdf/>

PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#>

PREFIX sio: <http://semanticscience.org/resource/>

PREFIX sh: <http://www.w3.org/ns/shacl#>

PREFIX schema: <http://schema.org/>

PREFIX rh: <http://rdf.rhea-db.org/>

PREFIX pubmed: <http://rdf.ncbi.nlm.nih.gov/pubmed/>

PREFIX
<http://data.epo.org/linked-data/def/patent/>

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX orthodb: <http://purl.orthodb.org/>

PREFIX orth: <http://purl.org/net/orth#>

PREFIX obo: <http://purl.obolibrary.org/obo/>

PREFIX np: <http://nextprot.org/rdfi#>

PREFIX nextprot: <http://nextprot.org/rdf/entry/>

PREFIX mnx: <https://rdf.metanetx.org/schema/>

PREFIX mnet: <https://rdf.metanetx.org/mnet/>

PREFIX mesh: <http://id.nlm.nih.gov/mesh/>

PREFIX Iscr: <http://purl.org/Iscr#>

PREFIX keywords: <http://purl.uniprot.org/keywords/>

PREFIX identifiers: <http://identifiers.org/>

PREFIX glyconnect: <https://purl.org/glyconnect/>

PREFIX glycan: <http://purl.jp/bio/12/glyco/glycan#>

PREFIX genex: <http://purl.org/genex#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX
<http://eunis.eea.curopa.cu/rdf/species-schema.rdf#>

PREFIX
<http://rdf.ebi.ac.uk/resource/ensembl.transcript/>

PREFIX
<http://rdf.ebi.ac.uk/terms/ensembl/>

PREFIX
<http://rdf.ebi.ac.uk/resource/ensembl.protein/>

PREFIX
<http://rdf.ebi.ac.uk/resource/ensembl.exon/>

PREFIX ensembl: <http://rdf.ebi.ac.uk/resource/ensembl/>

PREFIX ec: <http://purl.uniprot.org/enzyme/>

PREFIX dc: <http://purl.org/dc/terms/>

PREFIX cco: <http://rdf.ebi.ac.uk/terms/chembl#>

PREFIX chebihash: <http://purl.obolibrary.org/obo/chebi#>

PREFIX CHEBI: <http://purl.obolibrary.org/obo/CHEBI >

PREFIX bibo: <http://purl.org/ontology/bibo/>

PREFIX allie: <http://allie.dbcls.jp/>

PREFIX GO: <http://purl.obolibrary.org/obo/GO_>

PREFIX
<http://purl.orthodb.org/odbgroup/>

PREFIX vg: <http://biohackathon.org/resource/vg#>

PREFIX insdc:

<http://ddbj.nig.ac.jp/ontologies/nucleotide/>

patent:

eunisSpecies:
ensembltranscript:
ensemblterms:
ensemblprotein:

ensemblexon:

orthodbGroup:

PREFIX faldo: <http://biohackathon.org/resource/faldo#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX rdf:
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX up: <http://purl.uniprot.org/core/>
SELECT
DISTINCT
?insdCDS #?insdCDSBegin ?insdCDSEnd ?step
Zuniprot ?stepBeginInProteinSpace
?stepEndInProteinSpace ?annotationText
WHERE
{
# Find CDS annotated by INDSC that do not match a
UniProt protein.
?insdCDS insdc:translation ?sequence ;
a insdc:Coding_Sequence ;
faldo:location ?insdCDSLocation .
MINUS {
?uniprotSequence rdf:value ?sequence .

}

# Get the range of this CDS and make sure the coordinates
are on the
# path we need later
?7insdCDSLocation faldo:begin [ faldo:reference ?path ;
faldo:position ?insdCDSBegin] ;
faldo:end [ faldo:reference ?path ;
faldo:position ?insdCDSEnd] .

Istep a vg:Step ;
vg:path/skos:closeMatch ?path ;
vg:node 7node ;
faldo:begin [ faldo:reference/skos:closeMatch ?path ;
faldo:position
?insdcStepBegin ] ;
faldo:end [ faldo:reference/skos:closeMatch ?path ;
faldo:position ?insdcStepEnd | .
## I always forget how to interval ranges :(
FILTER ( (?insdcStepBegin >= ?insdCDSBegin &&
?insdcStepBegin <= ?insdCDSEnd) ||
(?insdCDSBegin ~ >=  ?insdcStepBegin = &&
?7insdCDSBegin <= ?insdcStepEnd) ||
(?insdcStepEnd >= ?insdCDSEnd &&
?insdcStepEnd <= ?insdCDSBegin) ||
(?insdCDSEnd >= ?insdcStepEnd &&
?insdCDSEnd <= ?insdcStepBegin) )
## Then we look for a node close to the ones in the CDS in
genome graph space (one step)
mode vg:linksForwardToForward ?nextNode .
7step2 a vg:Step ;
vg:path/skos:closeMatch ?nextPath ;
vg:node TnextNode .
## Where that node is on a uniprot matching sequence
MnextinsdCDS insdc:translation 7nextSequence ;



a insdc:Coding_Sequence ;
faldo:location/faldo:begin/faldo:reference
nextPath .
?uniprot up:sequence/rdf:value ?nextSequence .
BIND(IF(?insdCDSBegin >  ?insdcStepBegin,
7insdCDSBegin, ?insdcStepBegin - ?insdCDSBegin)/3
AS ?stepBeginInProteinSpace)

BIND(IF(?insdCDSEnd > ?insdcStepEnd, ?insdcStepEnd,
?insdCDSBegin - ?insdcStepEnd)/3 AS
?stepEndInProteinSpace)

?uniprot up:annotation ?annotation .

?annotation a up:Active_Site Annotation .

?annotation up:range ?annotationRegion .

?annotation rdfs:comment ?annotationText .

?annotationRegion faldo:begin/faldo:position
?annotationBegin .
?annotationRegion faldo:end/faldo:position
?annotationEnd .

FILTER (?annotationBegin >= ?stepBeginInProteinSpace
&& ?annotationEnd < ?stepEndInProteinSpace )
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